Yes I have read that theory....Next question: What can we do about THAT?!
It's not a "theory". It's a scientific fact.
Tolerance to diazepam and changes in GABA(A) receptor subunit expression in rat neocortical areas
C Pesold 1, H J Caruncho, F Impagnatiello, M J Berg, J M Fritschy, A Guidotti, E Costa
Affiliations expand
PMID: 9200730 DOI: 10.1016/s0306-4522(96)00609-4
Full text linksCite
Abstract
Long-term treatment with diazepam, a full allosteric modulator of the GABA(A) receptor, results in tolerance to its anticonvulsant effects, whereas an equipotent treatment with the partial allosteric modulator imidazenil does not produce tolerance. Use of subunit-specific antibodies linked to gold particles allowed an immunocytochemical estimation of the expression density of the alpha1, alpha2, alpha3, alpha5, gamma(2L&S) and beta(2/3) subunits of the GABA(A) receptor in the frontoparietal motor and frontoparietal somatosensory cortices of rats that received long-term treatment with vehicle, diazepam (three times daily for 14 days, doses increasing from 17.6 to 70.4 micromol/kg), or imidazenil (three times daily for 14 days, doses increasing from 2.5 to 10.0 micromol/kg). In this study, tolerance to diazepam was associated with a selective decrease (37%) in the expression of the alpha1 subunit in layers III-IV of the frontoparietal motor cortex, and a concomitant increase in the expression of the alpha5 (150%), gamma(2L&S) and beta(2/3) subunits (48%); an increase in alpha5 subunits was measured in all cortical layers. In the frontoparietal somatosensory cortex, diazepam-tolerant rats had a 221% increase in the expression of alpha5 subunits in all cortical layers, as well as a 35% increase in the expression of alpha3 subunits restricted to layers V-VI. Western blot analysis substantiated that these diazepam-induced changes reflected the expression of full subunit molecules. Rats that received equipotent treatment with imidazenil did not become tolerant to its anticonvulsant properties, and did not show significant changes in the expression of any of the GABA(A) receptor subunits studied, with the exception of a small decrease in alpha2 subunits in cortical layers V-VI of the frontoparietal somatosensory cortex.
The results of this study suggest that tolerance to benzodiazepines may be associated with select changes in subunit abundance, leading to the expression of different GABA(A) receptor subtypes in specific brain areas. These changes might be mediated by a unique homeostatic mechanism regulating the expression of GABA(A) receptor subtypes that maintain specific functional features of GABAergic function in cortical cell layers.GABA-induced uncoupling of GABA/benzodiazepine site interactions is mediated by increased GABAA receptor internalization and associated with a change in subunit compositionM L Gutiérrez 1, M C Ferreri 1, M C Gravielle 2
Affiliations expand
PMID: 24215979 DOI: 10.1016/j.neuroscience.2013.10.077Free article
Full text linksCite
Abstract
Persistent activation of GABAA receptors triggers compensatory changes in receptor function that are relevant to physiological, pathological and pharmacological conditions. Chronic treatment of cultured neurons with GABA for 48h has been shown to produce a down-regulation of receptor number and an uncoupling of GABA/benzodiazepine site interactions with a half-time of 24-25h. Down-regulation is the result of a transcriptional repression of GABAA receptor subunit genes and depends on activation of L-type voltage-gated calcium channels. The mechanism of this uncoupling is currently unknown. We have previously demonstrated that a single brief exposure of rat primary neocortical cultures to GABA for 5-10min (t½=3min) initiates a process that results in uncoupling hours later (t½=12h) without a change in receptor number. Uncoupling is contingent upon GABAA receptor activation and independent of voltage-gated calcium influx. This process is accompanied by a selective decrease in subunit mRNA levels. Here, we report that the brief GABA exposure induces a decrease in the percentage of α3-containing receptors, a receptor subtype that exhibits a high degree of coupling between GABA and benzodiazepine binding sites. Initiation of GABA-induced uncoupling is prevented by co-incubation of GABA with high concentrations of sucrose suggesting that it is dependent on a receptor internalization step. Moreover, results from immunocytochemical and biochemical experiments indicate that GABA exposure causes an increase in GABAA receptor endocytosis. Together, these data suggest that the uncoupling mechanism involves an initial increase in receptor internalization followed by activation of a signaling cascade that leads to selective changes in receptor subunit levels. These changes might result in the assembly of receptors with altered subunit compositions that display a lower degree of coupling between GABA and benzodiazepine sites. Uncoupling might represent a homeostatic mechanism that negatively regulates GABAergic transmission under physiological conditions in which synaptic GABAA receptors are transiently activated for several minutes.
Benzodiazepine exposure induces transcriptional down-regulation of GABA A receptor α1 subunit gene via L-type voltage-gated calcium channel activation in rat cerebrocortical neurons
María Florencia Foitzick 1, Nelsy Beatriz Medina 1, Lucía Candela Iglesias García 1, María Clara Gravielle 2
Affiliations expand
PMID: 32007495 DOI: 10.1016/j.neulet.2020.134801
Full text linksCite
Abstract
GABAA receptors are targets of different pharmacologically relevant drugs, such as barbiturates, benzodiazepines, and anesthetics. In particular, benzodiazepines are prescribed for the treatment of anxiety, sleep disorders, and seizure disorders. Benzodiazepines potentiate GABA responses by binding to GABAA receptors, which are mainly composed of α (1-3, 5), β2, and γ2 subunits. Prolonged activation of GABAA receptors by endogenous and exogenous modulators induces adaptive changes that lead to tolerance. For example, chronic administration of benzodiazepines produces tolerance to most of their pharmacological actions, limiting their usefulness. The mechanism of benzodiazepine tolerance is still unknown. To investigate the molecular basis of tolerance, we studied the effect of sustained exposure of rat cerebral cortical neurons to diazepam on the GABAA receptor. Flunitrazepam binding experiments showed that diazepam treatment induced uncoupling between GABA and benzodiazepine sites, which was blocked by co-incubation with flumazenil, picrotoxin, or nifedipine. Diazepam also produced selective transcriptional down-regulation of GABAA receptor α1 subunit gene through a mechanism dependent on the activation of L-type voltage-gated calcium channels. These findings suggest benzodiazepine-induced stimulation of calcium influx through L-type voltage-gated calcium channels triggers the activation of a signaling pathway that leads to uncoupling and an alteration of receptor subunit expression. Insights into the mechanism of benzodiazepine tolerance will contribute to the design of new drugs that can maintain their efficacies after long-term treatments.
Thats the million dollar question.. you would have to change gene expression of the gabaA subunits
You would have to find something that increase alpha1, alpha2, alpha3, alpha5, and gamma2 subunits..